
 

 

 

Abstract— This paper addresses the problem of compensating 
for the in-domain attenuation of inputs for a class of process 
control applications. Specific examples include the challenge of 
maintaining uniform temperatures or through-cure during thick-
film radiative drying and curing processes in the face of the 
effective input’s variation with film depth due to the so–called 
Beer-Lambert effect. These distributed parameter control 
problems are modeled with parabolic PDEs for the diffusion 
processes along with an in-domain input with a spatial 
attenuation function.  The approach presented in this paper 
involves transforming the original model to an equivalent 
boundary input problem to which existing output feedback 
backstepping boundary control design methods can be applied. 
The resulting compensation scheme includes a mechanism for 
tuning the closed-loop performance. The performance of this 
scheme is compared with a controller designed via modal 
approximation of the PDE.  
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I. INTRODUCTION 

 The choice of control design methods for distributed 
parameter systems modeled by partial differential equations 
(PDEs) often starts with categorizing whether the control 
inputs are applied at the boundary (boundary control) or 
distributed throughout or at a few locations in the spatial 
domain (in-domain control). These classes of problems have 
been studied extensively, and many PDE control approaches 
have been proposed and demonstrated [1-4]. 

 A particular class of PDE control problems that has 
received limited attention is one where a single actuator, 
often physically located outside the domain, has a distributed 
in-domain input to the physical process under consideration. 
Examples can be found in various industrial applications that 
use radiant energy sources. These processes, include letter 
pressing, production of holograms, microelectronics and 
integrated circuits, curing of dental fillings and rapid 
prototyping processes such as stereolithography [5]. 
Additional to this list are ultraviolet (UV) curing and infrared 
(IR) drying processes in automotive and aerospace 
paint/coating applications [6-7]. In all of these processes, the 
single actuating input is often a lamp, laser or LED energy 
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source physically located outside the target process, and 
transferring energy to the target process by radiation as an in-
domain input. However, this transfer is subject to the 
attenuation of the input intensity and thereby the reduction of 
its effectiveness farther in the domain of the target. The so-
called Beer-Lambert law is often used to explain this 
attenuation of intensity with depth.  

Practical challenges related to this Beer-Lambert effect 
(also referred to as photo-absorption) are worth highlighting. 
The main one is a restriction it imposes on the depth of 
effective processing achievable using open-loop methods. In 
UV curing of thick-film coatings, the Beer-Lambert effect 
could lead to poor performance of coatings cured with open-
loop methods. Typically, over-dosing, i.e., more energy than 
necessary, is applied to counteract the effect of depth 
attenuation. In stereolithography curing applications, the 
depth of cure limitation necessitates layered or multi-pass 
approaches (Figure 1). Current solutions involve offline 
open-loop optimization runs to determine a critical depth of 
cure for each curing pass [8]. If one can find compensation 
algorithms for the Beer-Lambert effect, it may be possible to 
change the stepped curing approach and speed up production 
(with less passes needed), improve product quality and 
reduce processing energy needs. 

 

 

 

 

 

 

 

Figure1. Potential Benefit of Compensating for the Beer-Lambert Effect 

While there appears to be no prior work on direct 
feedback compensation algorithms for the Beer-Lambert 
effect from control or actuation point of view, there have 
been some practical solutions proposed for the related 
observation/measurement problem. One is found in the field 
of bioengineering, where a depth compensation algorithm 
(DCA) is applied to compensate the decay of light 
propagation in a tissue so as to accurately localize absorbers 
in deep tissue by using depth sensitive Diffuse Optical 
Tomography (DOT) [9]. DCA is based on inversion to create 
a balancing weight matrix to compensate measurement 
sensitivity with depth. In combustion engine research [10], an 
iterative compensation algorithm is developed to compensate 
laser attenuation in optically dense fuel sprays (fuel image 
obtained by planner laser imaging). In this case, the 
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compensation is done by adding up the lost light along the 
path of the laser image iteratively pixel by pixel. In both of 
the above works, compensation is achieved by off-line post 
processing of measurements.   

In this paper, we formulate the problem of in-domain 
control, focusing on compensating Beer-Lambert effects in 
diffusion-dominated processes using output feedback. The 
key approach is that of transforming the body input problem 
into a standard boundary control problem for which solutions 
readily exist ([2], [11-12]). In our particular transformation, 
we imbed free parameters in the desired stable target systems 
that allows us to tune the performance of the resulting 
compensator. We assume that boundary measurements are 
available and construct PDE observers to estimate spatial 
state distributions. The distributed nature of the system is 
kept and the control design is performed based on the 
infinite-dimensional model without resorting to model 
reduction. 

 The remainder of the paper is organized as follows. 
Section II narrows down the problem statement starting with 
a generalized UV curing process model. Section III and IV 
detail the controller and observer designs, respectively. 
Section V provides demonstrative simulation results 
including comparisons with a modal approximation based 
control design. Section VI gives the conclusions of the paper.  

II. PROBLEM STATEMENT 

We consider UV curing as an example process for which 
there is an in-domain attenuation of input. The curing of a 
liquid polymer (resin) through exposure to UV light involves 
the attenuation of the thermal radiation through the resin in 
accordance with Beer-Lambert’s law. The curing process 
modeled is given by the coupled PDEs given by [13]: 

  (1) 

where,  is density,  is heat capacity, k is thermal 
conductivity,  is heat of polymerization,  is incident heat 
flux intensity,  is extinction coefficient of heat flux.  is 
the incident UV light intensity;  is the molar absorptivity; 

 is temperature  and  are the photo-
initiator and monomer concentration, respectively;  is the 
quantum yield of initiation;  is propagation rate constant;  
is convective heat transfer coefficient;  is termination rate 
constant; ,  

 and,  is constant ambient temperature. The 
Beer-Lambert effect is described by the exponential 
attenuation function multiplying the radiant input intensities 
in both the concentration and temperature equations.  

For the following analysis, we reduce the problem and 
focus on the thermal diffusion part subjected to the 
attenuation of the input according to Beer-Lambert’s law, 

where the heat input is multiplied by a spatial attenuation 
function. We neglect the monomer and photo-initiator 
consumption rates and associated nonlinearities. The 
simplified model is given by:  

   (2) 

Introducing non-dimensional spatial variable, time, and 
temperature, respectively, as:  

                     (3) 

                   (4) 

               (5) 

and, subsequently - omitting the superscript in  we obtain 
the non-dimensionalized form: 

    (6) 

where,   is 

the control signal representing the incident heat flux intensity 

(reaching the surface). The notation  represents . 
Note that this model specifically considers the exponential 
input decrement over the spatial domain. However, the 
approach we present below can be used with a general spatial 
function representing the attenuation.  

The control problem is to devise the input  such that 
some regulation or tracking of the spatially distributed 
temperature state is achieved despite the spatial input 
attenuation. We assume that the surface temperature is 
measured at the  end. The structure of the feedback 
control scheme sought is summarized in Figure 2. 

 
Figure2. Closed Loop Process Control System 
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III. CONTROLLER DESIGN 

Existing approaches for in-domain input control problems 
like (6) include a) model reduction to a finite number of 
ODEs to which standard linear control design methods apply 
[1] or, b) use of mobile actuators [14]. However, the former 
is subject to approximation errors, while the latter cannot be 
applied to the depth problem where moving of the actuator 
across depth is impossible. In this paper, we outline a three-
step process that directly deals with PDE control design for 
the system given in (6), without model reduction and with a 
spatially fixed actuator applying irradiance on top surface. In 
this section, we design a state feedback controller assuming 
availability of the distributed state. This assumption will be 
lifted when we discuss observer design in the next section. 

A. Transforming In-domain Input to Boundary Input 

In this step, we transform the spatially distributed in-
domain input problem (6) to an equivalent mixed boundary 
input problem (7 ): 

    (7) 

The idea is to assume that the original PDE (6) without a 
boundary input term is equivalent to a hypothetical PDE (7) 
with the boundary input term . This is inspired by the 
transformation sought in [4] where a PDE with localized in-
domain inputs is converted to a standard Cauchy boundary 
value problem and the feedback control law is sought via 
energy multiplier methods. 

The next step is developing a relationship that transforms 
the effect of control signal appearing in (6) to a boundary 
input,  as in (7). This can be done by equating the weak 
formulations of both equations (6) and (7). To perform the 
weak solution analysis, we consider a special Sobolev space: 

         (8) 

where: is the Hilbert 
space with the inner product and the norm defined in (9) & 
(10), respectively: 

        (9)

       (10)

This choice of Sobolov space helps us to maintain 
information at the second boundary, . We multiply the 
PDE (7) with an arbitrary test function which 
is smooth (i.e., continuously differentiable ). 
Then, performing integration by parts over the domain  the 
weak form of PDE (7) is 

        (11) 

Applying Lax-Milgram theorem with  one 
can prove the existence and uniqueness of the weak solution 
for this asymmetric boundary value problem following 
examples provided in [15].  

 Similarly, the weak form of the PDE (6) is: 

(12) 

Similar reason hold for the existence and uniqueness of 
the weak solution of (12). For both systems (11) & (12) 
where  is smooth (i.e., ), it is possible to 
prove that the unique weak solution can be exact solution 
with some regularity checks provided in [16-17].  

By subtracting (12) from (11) the relationship between 
the boundary input in (7) and in-domain input in (6) is given 
by: 

            (13)

The condition  and the equality constraint 

(13) are sufficient conditions for (11) & (12) to have an 
identical weak solution. Note that the solvability of from 
(13) depends strongly on the choice of test function. 

Given this transformation, we can use existing boundary 
control design methods to develop a control law for the 
boundary input problem (7) and then transform the results 
back to the original in-domain input problem (6), provided a 
proper selection is made for the test function . We return 
to this issue in subsection C below. 

B. Feedback Control Design Using Backstepping  

In the second step, the feedback control law is derived for 
the boundary control problem (7). In this work, we choose to 
apply backstepping techniques, detailed in the book [2]. The 
controller design starts by first defining a stable target 
system. The choice of the stable target system is not unique. 
For the current application, the standard heat equation with 
the boundary conditions in (14) was found suitable: 

    (14) 

It can be shown that this target system is exponentially 
stable for parameter  (see Appendix). And as will be 
illustrated later, this parameter provides a means for tuning 
the controller.  

We define a state transformation along with boundary 
feedback to bring the unstable PDE (7) to the desired stable 
form of (14). The suitable state transformation is: 

         (15) 
Following the approach detailed in [2], by analytically 

solving the relevant PDEs for the control gain kernel, one can 
find the control gain kernel to be: 

              (16) 
Then, the Neumann boundary controller that transforms 

(7) to (14) is determined by first taking the spatial derivative 
of (15) and then substituting the corresponding boundary 
condition at  The controller expression is: 
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  (17) 
The backstepping design guarantees stability of the 

closed-loop consisting of (PDE (7) with controls (17) via the 
selected invertible transformation (15) and stable target 
system (14). Next, this stabilizing controller designed for 
PDE (7) is to be applied back to the original PDE (6) using 
the transformation map (13) to obtain the original control 
signal   

C. Back Transformation of Boundary Control to In-Domain 
Input Signal 

In the back transformation, a proper test function   
needs to be selected when transforming the boundary control 
back to the original in-domain control using (13). For the 
given model, we selected the test function of the form (18) as 
one that satisfies the fundamental static solution for a unit in-
domain input applied to the PDE (6).  

              (18)

Using (13, 16 ,17 & 18) the original control signal 
becomes: 

(19) 
 

where, and  are all constant parameters, and obey: 

                (20) 

IV. OBSERVER DESIGN  

In the previous section, we designed a feedback control 
law that assumes the availability of measurements of the 
distributed state. In practice, only boundary measurements 
are available. We therefore need to design an observer to 
estimate the distributed state based on the available boundary 
measurements. A number of DPS observer design methods 
are summarized in [18], including adaptive observer, 
Lyapunov-based observer and backstepping observer. In this 
paper, for consistency with the control design, we adopt the 
backstepping technique to design an observer for the 
particular class of problems addressed in this paper. We note 
that the closed loop stability of the combination of separately 
designed observer and state feedback boundary controller for 
the transformed boundary actuated PDE (7) has been proved 
in [2] for the case where identical target PDEs are selected 
for both the controller and observer design problems. In this 
work, we found that choosing a different target PDE for the 
observer problem is more expedient for obtaining the 
observer gain in closed form. Furthermore, in addition to the 
steps outlined in [2], we introduce additional transformations 
for addressing the original in-domain input problem.  

Proceeding as above, we transform the in-domain input 
term to boundary input and design a boundary PDE observer.  
The construction of transformed observer model with 
boundary state measurement  takes the form:  

(21) 

Defining the error variable as  and subtracting 
(21) from (7), the error system becomes: 

  (22) 

The observer gain  can be determined by 
transforming the error system to a stable target system using 
state transformation along with boundary feedback. The state 
transformation selected is: 

        (23) 
It can be shown that the following traget system is 

exponentially stable for c>0 (see Appendix): 

    (24) 

The free parameter  can be used to set the desired 
observer convergence speed. Applying the approach detailed 
in [2], we obtain the following PDE and conditions for the 
observer gain kernel  and the observer 
gains . 

The gain kernel PDEs are summarized as follows:  

         (25) 

                 (26) 

               (27) 

The observer gains are: 

                (28) 

                 (29) 

Solving (27-29), the observer gain kernel becomes: 

(30)

The final step is to transform the observer (21) designed 
for the boundary-actuated problem (7) to that of the original 
in-domain input PDE (6). To this end, we apply the 
transformation (13) with the selected test function (18). The 
final form of the observer is given in (31) below. 

V. FINAL STRUCTURE OF PROPOSED COMPENSATOR 

The structure of the proposed output feedback Beer-
Lambert effect compensator is summarized in the schematic 
block diagram of Figure 3. The compensator consists of the 
separately designed observer and feedback controller 
summarized below.  

Transforming the observer back to the original in-domain 
input PDE (6), the final form of the observer takes the form: 
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(31) 

where, 

        (32) 

                  (33) 

Finally, substituting the estimated state in the feedback 
form of (19), the controller takes the form: 

(34) 

 
 

 

 

 

 

 

 
 

 

 

Figure 3. Final Form of the Beer-Lambert Effect Compensator 

VI. SIMULATION RESULTS 

In this section, we present simulation results to illustrate 
the performance of the proposed compensator. For 
comparison purposes, we also consider a common control 
design method of reducing the Distributed Parameter System 
(DPS) of PDE (6) in to a Lumped-Parameter System (LPS) 
using modal analysis (the approach is classical and can be 
referred from ([1] & [19]). Using a linear state space model 
generated from the modal analysis, an output feedback 
controller is designed, including integrator augmentation in 
order to minimize the steady state error. The design steps are 
also classical and are detailed in [20]. We applied pole 
placement on a reduced model that retains the first four 
modes. Only the unstable first mode is moved to the stable 
region and the rest of the stable modes are kept in their 
original locations. A full order LPS observer is also designed 
with same boundary measurement as the proposed DPS 
compensator. The observer poles are selected to be an order 
of magnitude faster than the controller poles. 

For the simulations, we consider a film depth of unit 
length and the non-dimensional PDE (6) as the plant with 
parameters:  To 
illustrate the effectiveness of the proposed compensator, an 
unstable open-loop plant dynamics is considered by taking 
these parameters. Since the evolution of temperature with the 
proposed and lumped parameter compensator are very 
similar, only the response of proposed compensator is shown 

in Figure 4. In both cases, the closed-loop system is tuned to 
stabilize to zero (non-dimensionalized) temperature in about 
4 non-dimensional time units. However, as Figure 5 shows, 
for this comparable performance, the lumped parameter 
compensator requires a bit higher peak and total control 
energy input compared to the proposed compensator. While 
combined control and observation spillover effects that arise 
from using the reduced model could be potentially 
destabilizing in general cases, here the overall dissipative 
nature of the diffusion process prevails [21]. If observation 
spillover could be ignored (which doesn’t hold for the current 
sensor set up), it was shown in [21] that the effects of control 
spillover alone are predictable and can be accounted for 
during tuning of the lumped parameter controller (essentially 
by including enough modes in the reduced model). The 
proposed DPS compensator doesn’t involve any model 
reduction and therefore doesn’t suffer from 
control/observation spillover issues.  

Another attractive feature of the proposed compensator 
structure is the ability to further tune its performance using 
the parameter  that arises from the choice of stable target 
system. For example, the system is stabilized in less than 2 
times units by increasing the value of  from 1 to 1.82. The 
control effort for both cases is shown in the same plot in 
Figure 5.  

Finally, the performance of the observer is illustrated in 
Figure 6 where we plotted the evolution of the spatial 2-norm 
of the observation error on a faster time scale with observer 
parameter   

 
Figure 4: Temperature Evolution with the  Proposed Compensator (K=1) 

 

Figure 5: Control Signals 
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Figure 6: Exponential Convergence of the Observer Error 

VII. CONCLUSIONS 

This paper presented one approach to extend the 
distributed parameter control design method of backstepping 
to a class of process control problems involving in-domain 
attenuation of process inputs. Considering the so-called the 
Beer-Lambert effect that arises in radiative curing and drying 
processes as an example, the paper outlined distinct steps that 
lead to an effective compensation of the in-domain 
attenuation of input. The first step was to develop a 
transformation map to change the original in-domain-input 
PDE to an equivalent boundary control problem. This was 
done by drawing on the weak formulation of the relevant 
PDEs and selecting a suitable test function that satisfies 
necessary regularity conditions. On the transformed system, 
backstepping boundary control and observer design methods 
were applied to extract the controller and observer that 
subsequently form the proposed compensator. This 
compensator retains the infinite dimensional nature of the 
original problem and as such does not suffer possible 
compromises from control/observation spillover effects 
present in lumped parameter compensator designs. In 
addition, the proposed compensator includes a simple tuning 
mechanism embedded in the choice of controller and 
observer stable target systems.  

APPENDIX 

The sufficient condition  for exponential stability of 
target system(14) is estabilished as follows. Choosing a 

Lyapunov function candidate: V  , taking the 
derivative, integrating by parts, using PDE and BCs in (14): 

        (A1) 

Using the Poincare inequality [2] 

     (A2) 

in (A1), we arrive at: 

      (A3) 

For , this reduces to the following, which proves 
exponential stability. 

  
The condition c>0 for target system (24) is proven 

similarly. 
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